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ABSTRACT

In formulating models for a complex system graphical representation is an effective
tool. When the components of the system are viewed as random variables, directed
graphical models detail the nature of the dependence amon them. Moreover, if for each
variable the conditional distribution is provided according to the graph, the joint
distribution is uniquely determined. Natural questions arise about the static behavior of
the system under such specification as well as its response to information (observed levels
of some of the variables). Answers to these questions require the ability to calculate
arbitrary marginal and conditional distributions. In complex cases (high dimensional
structures) such calculations require high dimensional integrations and/or summations.
Most of the work to date has taken advantage of properties of directed graphs to facilitate
exact calculations but is limited with regard to distributional assumptions and feasible
system sise. Monte Carlo methods for such calculations can accommodate much larger
system size with arbitrary dependence structure and distributional forms yielding
approximations which can be as accurate as desired. It is the objective of this paper to
detail such methodology. An illustration is provided using a diagnostic system for
congenital heart disease in neonates.
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1. lhtredutiou.

In formulating models for a complex system graphical representation is a useful too.

For non-deterministic systems, a directed graphical form provides a depiction of the joint

distribution of the random components as well as clarification of the nature of the

dependence structure present among them. More precisely, in such graphs, random

variables are pictured by circles or dots called the modes of the graph, while direct

dependencies between pairs of variables are represented by arrows. The node from which-

an arrow Emanates is the "parent", while the receiving one is the "child". Thus the graph

portrays qualitative dependence amongst the variables. The induced dependence structure

is quantified by specification of conditional distributions at each node given its parents.

Conditional densities at nodes are denoted generically by f(XIY) where X denotes the

variable defined at the node, and Y its parents. Figure I shows an illustrative six node

dependence structure.

[Insert figure 1 about here]

The provision of a conditional distribution for each variable in terms of its parents

is sufficient to uniquely determine the distributional model for the entire graph (see e.g.

Whittaker, 1990, chapter 3). We can construct the joint structure, from information

provided locally without requiring profound understanding of the whole system. This

facilitatem construction of the model and provides a powerful communication mechanism

between statisticians and their interdisciplinary audience. Most significantly however,

graphical representation of the statistical model distills dependence to necessary parts. For

example consider a "top down" factorization of the joint distribution in figure 1.

f(a,b,.. .f) = f(fW a,b,c,d,e)f(e I ab,c,d)f(d I a,b,c)f(c I a,b)f(b I a)f(a). (1.1)

What does the graphical model tell us about the terms on the right hand side?



Recall that two (possibly vector vatued) random variables X1 and X2 are conditionally

independent given X3, denoted by XI1LX21X3, iff f(xx 2 1x3) = f(xlx 3) f(x2 1x3 ), or,

equivalently, iff, f(xllx2,x3 ) = f(x I x3 ) and fx 2 lxl,x3) = f(x2 x3 ). For example, in a

Markov chain where dependence at state t given all preceding states 1,2,...,t-1 is limited to

the immediately preceding state t-1,

f(9tIxt-_lXt2,...,x0 ) = f(xt Ixt_1), i.e., Xt_.(Xt-2,...,X1IXt_1.

In response models for Y suppose that from the collection of explanatory variables x

subset -a is sought such that, given this subset, dependence on the rest of the variables is

minimal. Then f(y I ) = f(y I x.), i.e. YLXc I X where Xc is the complement of Xa.

Returning to (1.1), the graph implies the following conditional independence

relationships: FJL(A,B,E) I (C,D) from which f(f I a,b,c,d,e) = (f I c,d); EL(A,B,D) I C

from which f(eIa,bc,d) = f(eIc); DJLC I_(A,B) which implies f(dIa,b,c) = f(dIa,b); and

A_LB which implies, f(b a) = f(b). Hence (1.1) simplifies to f(a,b,c,de,f) = f(fl c,d)

f(eIc) f(dIa,b) f(cIa) - f(b) . f(a).

Effective use of the graphical model requires the ability to compute arbitrary

marginal and conditional distributions. At the system level, the need to be able to

calculate desired distributions arises as we try to understand quantitatively both static and

dynamic system behavior. In some cases, such distributions can be used for model

assessment, in the sense, of determining the plausibility of our proposed model of the

system (see section 3). Once comfortable with this model, such distributions enable use of

the system for diagnostic purposes. In this regard we seek to condition given observed

information, i.e., to adjust distributions by propagation of observed information through

the network. In the absence of information this amounts to marginalization. Essential

here is that very little if any restriction should be imposed on data acquisition, i.e., on

which part of the graphical model is considered given (fixed).

The directed graphical models we employ here have been called causal models

(Pearl, 1987), graphical as.ociation models (Lauritzen, 1990a), and, most recently, causal
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probabilistic networks, CPN's, (Jensen, Lauritzen and Olesen, 1991). Among the many

areas of applications of these models are expert systems, artificial intelligence, genetics,

reliability trees and organizational structures. Motivation for a great deal of work in the

statistical uses of graphical modeling can be traced to the seminal paper of Darroch,

Launrisen and Speed (1980) on the analysis of log-linear models. This article introduced

the class of graphical models, exploring in an elegant and powerful way the implications of

conditional independence.

The work of Lauritsen and Spiegelhalter (1988), renewed interest in graphical'

approaches by developing an efficient procedure for the analysis of general discrete models.

They assume that the dependence structure is completely known, i.e., the conditional

probabilities of an event given all influencing factors are specified a priori, either relying on

expert opinion or case specific data. Subsequent work (e.g., Spiegelhalter and Cowell,

1991) allows for imprecision in the model specification by modeling the conditional

distributions at each of the discrete nodes as parametric families. The dependence

structure is kept intact, while at each variable prior distributions are added to the

parameters of the conditional distribution defined on it. These prior distributions are

represented by parental nodes at the top of the network. Figure 2 extends figure 1 in this

fashion. Extending the graphical model in this way seems sensible. The resultant joint

distribution incorporates the parameters in a natural hierarchical fashion. It also enables

us to maintain the assumption that the dependence structure in the graphical model is

completely specified.

[Insert figure 2 about here]

An important parallel development is work by Lauritzen (1990a,b) and Wermuth

and Lauritsen (1990) which formulates the Conditional Gaussian (CG) family of

distributions, in an attempt to analyze mixed models i.e. models having both discrete and
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continuous nodes. Though an important extension of existing theory, it is very restrictive

in not allowing conditional-to-discrete dependence, i.e. no continuous node can have a

discrete child

Based upon triangulation of the graph, Lauritzen and Spiegelhalter (1988) presented

an algorithmic approach for analytic calculations in a purely discrete model which requires

computation only at the local level. Approximate versions for mixed models are described

in Lauritzen (1990b). Though elegant these methods do not offer a unified approach to the

processing of general graphical models. Distributional assumptions are limited. Tailored-

approximations are ultimately necessary in cases where modeling makes analylical

calculations intractable as is the case with non-conjugate models. High model dimension

can severely strain computational resources. Monte Carlo approaches offer the promise of

accommodating these problems.

Monte Carlo approaches have been considered by earlier researchers though

exclusively for binary nodes. Pearl (1987) uses the neighborhood structure inherent in the

network to construct the complete conditional distribution of each node. Under mild

conditions the complete conditional distributions uniquely determine the joint, (e.g. Besag,

1974). Appropriate sampling of them produces a Markov chain whose stationary

distribution is the one we desire. Explicit details are given in section 2.3 where we

generalize Pearl's approach. Another example is the Likelihood Weighting method

(Shachter and Peot, 1989). This technique uses a combination of conditional independence

relations and an importance sampling scheme to derive estimates of statistics or functions

of the variables from samples generated according to the discrete joint distribution.

Extension to general mixed models is the subject of section 2.2.

The key point in our work is a change in focus. Rather than customary analytical

attempts to obtain features of a high dimensional joint distributions we propose the use of

sampling-based approaches to approximate such features. In concert with subgraph

approximations, which we report on in a subsequent paper, Monte Carlo technology can
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process very large systems in a unified manner, with the prospect of "black box" software

(we note the current development of BUGS - Bayesian Inference Using Gibbs Sampling -

as reported in Thomas, Spiegelhalter and Gilks, 1991).

In section 2 we fully describe the independent or importance sampling approach as

well as the Markov chain (Gibbs Sampling) approach. In section 3 we take up classes of

distributional families which are attractive as nodes in our directed graphical model, as

well as the question of model assessment. In section 4, we illustrate both approaches with

the analysis of a twenty-node mixed graphical model for diaegnosis of congenital heart,

disease in neonates. We conclude this section with some notation and a few formal

definitions which will be used in the remainder of the paper.

Central to our graphical methodology is the concept of a Directed Acyclic Craph

(DAG). A DAG consists of a set of nodes V and a set ECVxV of ordered pairs such that if

(ij)EE then (j,i)OE. Groups of nodes in V form paths if for each two nodes i and j in the

group, (ij)EE or (j,i)EE. Acyclic graphs have no cycles (paths with the same starting and

ending node). Cycles lead to logical implausibilities (Pearl, 1986). Probabilistically, the

joint distribution of the variables is not uniquely defined.

One of the fundamental relations expressible by a DAG is that of precedence.

Parental nodes precede their children, in a causal or temporal sense, inducing an ordering

of the nodes in the graph. We enumerate the nodes in a top-down fashion, starting with

those without parents (source nodes) at the first level, proceeding to their children at the

next level, and so on to the bottom of the graph. Nodes allocated to the same level can be

ordered arbitrarily permitting many equivalent enumerations.

If node i precedes j, written ikj, according to an ordering in the graph, then

iEpr(j) - {s:s.Cj}, the set predecessors of j. We also define the parental set of i as pa(i), and

the set of children of i as ch(i) and denote the variable at node i by Xi. Conditional

independence arises naturally for a DAG in terms of the set of predecessors. That is, if

nodes i and j are not connected and ij, then
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j_-_i I pr(H-) <-- > j_.Li I pa~j)

where pr(j-i) is the set of predecessors of j excluding i. This is equivalent to saying that j

is conditionally independent of i given its parents.

As a result, the following factorization of the joint density of the random variables

at the nodes in V ensues (see e.g. Whittaker, 1990, p. 73). If n is the number of nodes in

V)

n
f(xi,...,Xn) = II f(x1,Ipa(v)) (1.2)

This factorization was illustrated in conjunction with figure 1 and is central to the

stochastic simulation methodology described in section 2 as well as to the distribution

theory in section 3.

2. Simulation Approaches

Desired analysis of general mixed directed graphical models requires high

dimensional integration/summation. Such calculations usually can not be carried out

analytically, either exactly or approximately. Simulation methods offer a viable

alternative as shown in section 2.1. In particular, Monte Carlo methods may be performed

noniteratively or iteratively. We detail these approaches in subsections 2.2 and 2.3

respectively.

2.1 Why Simulation?

The joint density of the set of variables X = (X1,X2,...,Xn) represented by the

graphical model G is expressible by the factorization (1.2). TLh variables Xi may be

either discrete or continuous. Explicit discussion of forms for the f's is deferred to section

3. Following earlier remarks we assume that, whatever form these specifications take, all

the Ps are fully known, i.e., included in the set pa(Xi) are any parameters in the density of

Xi. To answer questions we may be interested in regarding model G requires the ability to
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compute arbitrary conditional distributions and their features. In particular, suppose the

conditional information fixes a subset of the variables (possibly an empty set if

marginalisation is sought), X of size n to specified levels. The nodes in Xo are called

evidence nodes in Shachter and Peot (1989). Let Xu denote the complement of Xo, i.e. the

unobserved nodes. We seek the conditional distribution of Xu given Xo=xo as well as

that of X given Xo=xo, where X denotes a generic component of Xu. Exact calculation

of f(Xu I X0 = xo) requires an n - no dimensional integration/summation and calculation of

f(X XO = xo) requires an additional nO- 1 dimensional integration/summation:

Envisioning n and possibly n0 to be large, such computation will not be feasible by exact or

approximate analytic methods. Hence, we turn to simulation strategies.

As observed in Smith and Gelfand (1992), there is an essential duality between a

sample and the density (distribution) from which it is generated. Clearly the density

generates the sample. But conversely, given a sample we can approximately recreate the

density and its features. Thus our objective is to draw samples from f(X IX0 = Xo).

Drawing observations from the joint distribution of X is straightforward. It may be done

in a "top down" fashion using tht components of the factorization (1.2). That is, we

sample all source nodes, then sample all their children, etc. The directed graphical model

reveals which sampling orders are thus fewsible and we shall in fact assume that the

labeling of the X's from X1 to Xn constitutes a feasible sampling order.

In attempting to sample f(Xu I Xo0 = x0 ) one might take draws from f(X) and retain

those meeting the evidence Xo0 = x0 . Such rejection sampling is called logic sampling (see,

e.g., Henrion 1988), and is very inefficient when the nodes in Xo are discrete but the event

Xo = xo is rare; it is impossible if any of the nodes in Xo are continuous.

Note that, though we can not obtain f(XUIXo = xo) explicitly, we do know its form

modulo a normalizing constant, i.e.,

f(XuIX0 = Xo) OE f(Xu, Xo) (2.1)

where the right hand side of (2.1) is given in (1.2). In fact we can write
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f(Xu I Xo=xo)S•.i f(Xi I pa(Xi)) II f(Xi I pa(Xi)) (2.2)
XiEX 0  XE I(Xu,x0)

Suppose, as is traditional, that we refer to what is observed as "data" and what is

unobserved as "parameters". Then the first product on the right side of (2.2) could be

considered as a likelihood since here all the Xi are observed while the second product could

be considered as a prior since here none of the Xi are observed. Then (2.2) is of the form

Likelihood z Prior as in customary Bayesian modeling and we may bring to bear on our

problem all of the recently discussed sampling-based technology for Bayesian calculations.

This work includes noniterative Monte Carlo using importance sampling, as in Van Dijk

and Kloek (1983), Stewart (1983), and perhaps best summarized in Geweke (1989) as well

as iterative or Markov chain Monte Carlo as in Geman and Geman (1984), Tanner and

Wong (1987) and Gelfand and Smith (1990) and perhaps best summarized in Tierney

(1991).

2.2 Idependent or Noniterative Monte Carlo

Since we can not sample from f(Xu I X o = x0 ) directly, we develop and employ a

suitable importance sampling density (ISD). More precisely from a density say g(Xu) we

draw a large sample denoted by Xut, t = 1,...,m where g(Xu) has the same support as

f(XuIXO -= xo). Then, expectations under f(Xu I Xo = xo) e.g. E(h(Xu) I Xo = xo) are

approximated by the weighted sum

E h (Xut) -wt

hm- t-1 h (2.3)

E w
t=1

where wt = f(XutlXo = xo)/g(Xut). Moreover, resampling the Xut with probabilities

gt = wt/Ewt produces samples approximately distributed according to f(XuIXo=xo) (see

Rubin, 1988, Smith and Gelfand, 1992).

The selection of g becomes the primary concern. The more closely g resembles
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f(Xu,Xo) the more efficient g is in terms of sample size m. Hence a good ISD is

characterized as having fairly constant weights wt. Such stability might be measured

through the variance of the wt (Geweke, 1989) or their entropy (Ferguson, 1983). A

natural choice for g would be the prior 1 f(X. I pa(Xi) I which, provided that it
XiEXu (XuXo)

is proper, it can be readily sampled using a feasible sampling order. This choice of g results

in weights wt = II f(Xilpa(Xi)) I which would naturally be called likelihood
Xi E Co (XutXo)

weights (see Shachter and Peot, 1989), i.e., bigger weights are attached to "more likely"-

Xut'5. Such wt are not likely to be very stable since we would not expect the prior to

"match" the Likelihood x Prior form. Nonetheless, such weights are used successfully in

the example of Section 4.

A more refined selection of g can be obtained as follows. Partition Xu into a set of

discrete and a set of continuous variables denoted by X d and Xc respectively. We consideru u
an ISD which samples equally likely over the domain of Xd and then, given Xu =

draws Xc - g(XuI Xru -= x4). The joint density of Xu under this ISD is proportional to the
dý d

conditional density g(XculXd). Thus to match f(Xu, xo), for each Xu = du we would

4c dchoose g(X Iu) to match f(Xu, x ). Methods for developing an efficient ISD for a

nonstandardized continuous density have received much attention lately (see e.g. Geweke,

1989, Oh & Berger, 1992, West, 1992). In most of this work the resultant ISD is a mixture

of normal or t distributions.

2.2.1 Performance of Independent Monte Carlo Estimates

Results in Geweke (1989) applied to hm of (2.3), show that under mild conditions,

(i) *-[hm- Eh(XuIXo = xo)] is asymptotically normal N(O, o2 ), where o.2 =

c- 2 (xo)f ((h(xu) - Eh(XujX°f = xo)) 2  f2 (xu, xo)/g(xu) )dxu. Here c(xo) =

f f(xu,xo)dXu with integral signs here and in the sequel denoting a multiple

9



integration/summation over the domain of Xo.

(ii) Oli E [h(Xut)-hmn]"w"/(_Zwt) 2 which can be calculated from the sample of
t=1 t =1

Xut is such that mam -4 ao enabling an estimate of the accuracy of hm*

Suppose we seek density estimates for the components of Xu perhaps to obtain

modal values or quantiles. The Xut can be resampled as suggested after (2.3), to create

samples approximately distributed according to f(Xu I Xo). Then, using appropriate.

coordinates, histograms for the Xu and kernel density estimates for the Xc can be created.

Improved estimates utilizing the known forms f(Xuxo) and g(Xu) are available. If we

want an estimate of f(X' 1Xo=X0 ), where X' is a generic component of Xu, we may write,

f~x' .f(x,,Xo xf(x., x, xo ..
f( IXo=Xo)=j f f, g(x.)dx;- f( I--.1-X0 ,gx)dx, dx

g (X) g(x' ,Xu)

where XU is the collection of all variables in Xu apart from X' and g(Xu) = Jg(xu)dx'.

Suppose xut=(Xx•t), t=1,2, ... ,m, are generated from g(Xu). Let

f(Xt(x)wt (2.4)
t

where ht(X w wt(x )= f(X XtXO) andwt _f(Xt XuttXo)) Since (2.4)

is of the form (2.3) results of Geweke apply. In particular, at any fixed X we may

estimate the accuracy of our density estimator using
m 2 (2.5)

^2(X') =E t[ht(X )-f( Xo' xo )]2 - w t/( E wt)2 (2.5)
t=1t=

Note that wt need not be recomputed with changing X. However in computing wt(X ), a

univariate integration or summation over X is required to obtain g(Xu). In the continuous

case, the integration can be done quickly and cheaply using a trapezoidal or Simpson's rule

integration. The estimator in (2.4) is used in the illustrative example of section 4.
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2.3 Dependent or Iterative Monte Carlo

Rather than using independent samples as in the ISD approach of section 2.2 we

may generate dependent sequences using a Markov chain whose equilibrium distribution is

f(.Xu I.Xo = Xo). Such Markov chain Monte Carlo dates at least to Metropolis et al (1953).

A version which samples from updated complete conditional distributions was introduced

as the Gibbs sampler by Geman and Geman (1984) for restoration of noisy images. The

setting is a high dimensional Markov random field with binary nodes built from local

neighborhood structure. Pearl (1987) applied the Gibbs sampler (referring to it only as a-

stochastic simulation technique) to causal models involving binary variables. Gelfand and

Smith (1990, 1991) discuss a version involving continuous nodes in the context of

hierarchical Bayesian models.

The attraction of the Gibbs sampler is that draws from the high dimension density

f(XuIXo=Xo) are obtained by making draws from the univariate complete conditional

distributions f(X I Xux). Given a starting state vector for Xu, the components of Xu are

typically sampled in the natural order, sometimes referred to as a raster scan, with the

conditional levels of Xu updated after each sampling while Xo remains "clamped" at xo (In

fact, any infinitely often visiting order of the components works). One pass through all of

the components of Xu is called an iteration. After I such iterations a sampled vector X(uu u
will result. Under conditions which insure that the iterations X4) are not trapped in a

portion of the state space of Xu, as 1-4 w, 4W) converges in distribution to an observation

from f(XuIX 0 =xo). Such conditions mandate that we can not permit any purely

deterministic nodes in our graphical model. Technically, we merely remove any such

nodes, adjusting parents and children accordingly. Convergence will be at a geometric

rate, possibly uniformly so (see e.g. Roberts and Polson, 1990, Schervish and Carlin, 1991,

Liu, Wong and Kong, 1991 and rather generally, Nummelin, 1984). Gelman and Rubin

(1992) show that, for certain models, I will have to be extremely large before "acceptable"

convergence is achieved and that several different starts for Xu will be required to make a
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convergence assessment. An attractive empirical tool for assessing convergence is the

Gibbs stopper as described in Tanner (1991). Unfortunately, apart from special cases, its

computation becomes prohibitive with increasing n. However, use of subgraph

approximation results in a substantially reduced graph, assisting in the examination of

convergence.

It is worthwhile to remark that errors due to the quality of our various

approximations will likely be small compared to the general uncertainty in the model

specification itself. For complex high dimensional models incorporating arbitrary-

dependence structure, "ballpark" density estimates may have to suffice.

Let is be more specific about the form of the complete conditional distribution for

X . It is clear that f(X IXuXo=xo) is proportional to (1.2). Moreover, with regard to

factorization, only terms involving X" as a child or as a parent need be considered so that

f(X, I "Xu =Xo 0) at(AX' I pa(X)] 11 f[V I pa(V)]) I (Xx)(2.6)
VE ch(X) (Xu'xo)

Thus, the only variables involved in the complete conditional distribution of X', are its

parents, its children, and the parents of these children. This set has been called the

Markov blanket by Pearl (1986). Since typically dependence in the model is sparse, only a

few of the terms in (1.2) appear in (2.6).

Turning to the sampling itself we recall that by virtue of the Markovian updating

the conditional levels in (2.6) will change with each draw of X'. In addition, the form of

(2.6) will almost never be a standard distribution even if the individual terms in the

product are. For discrete variables sampling is routine upon standardization/summing of

(2.6) although for ordinal variables rejection methods are available (Devroye, 1986). For

continuous variables we might also consider a rejection method (see Devroye, 1986 or

Ripley 1987). For instance an envelope function for (2.6) is Mf[X I pa(X')] where

M=sup 11 f(VIpa(V))I Typically, 4X' ')] is
X' V.ch(Y)p is readily sampled and M

is not difficult to compute though it must be recomputed with changing levels of Xu* In
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practice such envelopes tend to be very inefficient producing very small acceptance rates.

This is not surprising since the concentration of mass for f[X Ipa(X )] may be quite

different from that of (2.6). Nonetheless, we used such rejection for our example in Section

4 since generation from the univariate f(X' I pa(X')) is so inexpensive.

Unfortunately, specialized rejection methods such as in Gilks and Wild (1991) which

take advantage of log concavity of the density f, squeezing etc. will not likely be applicable

to the form (2.6). Other tailored versions may be costly and not readily automated.

Alternative "black box" Gibbs samplers for graphical models handle continuous variables*

by approximate inversion of the probability integral transform as in, e.g., Tanner (1991),

by the use of a modified ratio of uniforms method as described in Wakefield, Gelfand and

Smith (1991), by adaptive normal kernel density approximations to (2.6) (Silverman, 1986,

§5.3).

As for density estimation utilizing the output of the Gibbs sampler, suppose we

have a sample of m vectors Xut, t=1,2,...,m, roughly independent and approximately

distributed from (Xu I Xo-xo). For component X' we could create a histogram from the

set X for discrete X or a kernel density estimate (as in Silverman, 1986) for X

continuous. However, Rao-Blackwellized density estimates,
m

f(X' IX0 = x0) = I M Af(X'I .X'ut, X0o - 0 ), (2.7)
Mt=1

using the known structure (2.6), are preferable (see in particular, Gelfand and Smith 1991).

3. Distributional Models and Model Choice

Thus far we have assumed complete specification of the directed graphical model.

As emphasized earlier the attraction of these models is that the global structure is

determined through provision of local detail. Specification of local detail is at the node

level in accordance with the factorization (1.2) and encompasses two aspects -

identification of parents and of conditional distributions at the node given levels of the
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parental variables.

In models comprised of an ensemble of variables with, a priori, little structural

insight, often the purpose of the modeling exercise is to identify the nature of the

dependence In such contexts edges of the graph need not be directed so that there can be

links between nodes without labeling a parent and a child. The book of Whitaker (1990)

provides a good account of the process of modeling dependence. See also the recent papers

of Wermuth and Lauritsen (1990) and Edwards (1990). Our models are directed, i.e.,

restricted to systems having a natural flow or hierarchical sequence for the variables-

whence identification of parents is implicit. It is unrealistic to assume that the dependence

structure is known so precisely. For a given set of nodes we might postulate several

structural form i.e. several directed graphical models, and attempt to choose amongst

them. We return to this issue at the end of the section.

As for distributional specification, in practice such distributions should be elicited.

The Bayesian literature on elicitation may be useful in this regard. See, for example,

Kahneman et al (1982) for a very readable discussion, and Kadane et al (1980) for

implementation suggestions. Still, several functional forms may be candidate distributions

again leading to the question of model choice. An attractive feature of the simulation

methodology developed in section 2 is that it can be applied regardless of the forms taken

for the f(XiIpa(Xi)).

Classes of models for discrete nodes are discussed in Spiegelhalter and Lauritzen

(199C). In particular, for an arbitrary node Y let us think of pa(Y) as comprised of two

sets, one a set of "causal" parents, 7y. and the other a set of "parametric" parents, Oy.

Then X is viewed as the collection of nodes (VI) where V is the set of all "nonparameter"

nodes and = U 1y provides the overall parametrization for the model. Then (1.2)
YEV

becomes
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Customary modeling imposes pa(Oi) C .

$11p~lqalter and Lauritzen introduce an assumption of global independence which

says that n II f(aIpaD) n AI f(&). Thus the OV are presumed to be independent
AJE ViEV i

sets of parameters. If all of the parents of Y are discrete variables we can envision Sy as

breaking into components each corresponding to a configuration of pa(Y). Spieelbalter

and Lauritsen then introduce the further assumption of local indepesdence if f(Dy)

factors into a product of densities over these components.

Now if Y is a nominal variable its realizations constitute multinomial sampling in

which case the component of ty corresponding to a particular configuration of pa(Y)

could be taken as the vector of multinomial probabilities for Y under this configuration.

A convenient choice of density for this component would be a Dirichlet whence, under local

independence, f(ty) would be a product of Dirichlet densities over all possible onfigurations

of pa(Y). As Spiegellalter and Lauritzen observe, such specification introduces, for Y

alone, •y of dimension equal to (# of levels of Y - 1) a (# of configurations of pa(Y)).

A more parsimonious assumption, which also accommodates the case where Y has at least

one continuous parent, models f(Y I y,S) as a parametric family in Sy with 7y as

covariates. For instance we might model the multinomial probabilities for Y through a set

of logits (e.g., baseline or adjacent). In the binary case we would set
(f(Y=1 7y,#y)

where T('yy) is an r. 1 vector of functioni of y and ty is thus an ru 1 vector of coefficient

parameters. We might further assume a multivariate Gaussian density for ty, possibly

rather vague.

In the case of mixed models, the unique distributional family which has been

discussed in the literature is the conditional Gaussian family (Lauritzen and Wermuth,

1989; Wermuth and Lauritzen, 1990). •"L conditional Gaussian distribution provides a

15



joint distribution for the entire directed graphical model. It arises from a two part

asymmetric construction. The marginal distribution of the discrete variables is

multinomial and, condition on these variables, the continuous variables have a multivariate

normal distribution. The form of the joint density (1.2) is then immediate and is

parametrized by the set fpi,;iXi} where i indexes the state space of the set of discrete

nodes and pi is the probability of state i with p1 and L the mean vector and covariance

matrix respectively for the conditional multivariate normal distribution given state i. The

conditional Gaussian family has an attractive set of theoretical properties which are.

summarized in Lauritzen (1990b) and in Whittaker (1990). Unfortunately, this family is

restrictive in two unappealing ways. First, no discrete node may have a continuous parent

and second, all continuous nodes must follow a normal distribution. However, using this

family, exact calculations can be carried out using the junction tree representation as in

Lauritzen (1990a). If not, Lauritzen (1990a) provides only an approximate computational

method using second order Taylor series expansions which produces moment estimates for

the conditional density f(Y I Xo=xo), but no density estimates.

We propose handling continuous nodes as we did the discrete nodes above, i.e.,

assuming (YI 7y,*y) to be a parametric family in ty with y as covariates. A broad and

convenient class of specifications would be those of generalized linear models (McCullagh

and Nelder, 1989) where f(YJ I7y, y) is a univariate cont inuous exponential family and a

suitable link function connects the mean of Y with a linear form in Oy. Discrete nodes

modeled as e.g., binomial or Poisson, could also be handled in this fashion.

We return to the matter of model choice. Consider two competing fully specified

directed graphical models to describe a system. The models may differ in terms of parental

specification at one or more nodes and/or distributional specification at one or more nodes.

How do we choose between the models? The question is not well formulated unless we ask

it with regard to data observed at components of the system. Suppose Xo denotes the set

of nodes at which we take observations and suppose we observe independent xop 1= I,...,L.
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Note that the x0 l may be real data generated from the system or artificial data generated

under some joint distribution for Xo which we would like the system to emulate. It seems

natural to choose the model more likely to have yielded this data. Using the methodology

in section 2, we can calculate under each model an estimate of the density f(Xo), hence, an

estimate of Jlf(ox0 . The mcdel with the larger value of this product would be chosen.

Unless the dimension of Xo is small, a very large L may be required to obtain a satisfactory

estimate of f(X). Instead we might replace f(Xo) by In f(X' IXo), where Xo is theX'EXO

collection of all variables in X0 apart from X The densities in this product are univariate

and can be straightforwardly estimated using ideas in sa.ction 2. In particular, with Xu

defined as before, suppose Xut, t=1,2,...,m, is a sample from f(XAzI%). Then

f(x' Ix;)= m- Z f(x" IXut,x;) (3.1)
t=1

Note that (3.1) is a mixture of complete conditional distributions for X'. See Gelfand, Dey

and Chang (1992) for further discussion of the use of such cross validated densities in the

context of model selection.

4. An mustrative Example

Accurate diagnosis of congenital heart disease immediately after birth increases the

newborn's chances of survival bitt is a far from simple procedure. In the interest of

communication of preliminary symptoms between admitting and specialist physicians and

education of medical students, a questionnaire was developed to aid doctors during an

infant's referral to the specialist hospital (Franklin et al., 1991, Spiegelhalter et al., 1991).

A directed graph representing one aspect of congenital heart disease appears in figure 3.

[Insert figure 3 about here]
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The graph and extensive conditional probability tables quantifying the associations

between disease, symptoms, evidence and risk factors were constructed in consultation with

a gr.;up of pediatric cardiologists, and used by Spiegelhalter and Cowell (1991) to describe

learning about unobserved variables (in this particular case all internal nodes). The

conditional probability tables were kindly provided by Dr Spiegelhalter to aid our analysis.

In their analysis all nodes in the graph were assumed discrete. In fact, several of the nodes

such as 11, 12, 16 and 17 are inherently continuous, but a CG family of models cannot

permit the first two to of these to be so.

We analyze this graphical model by the Monte Carlo methods of Section 2. Logit

forms were used to describe the conditional distributions at the discrete nodes, while the

continuous nodes (11, 12, 16 and 17) were assumed to be normal on the logarithmic scale.

The conditional normal distributions for the continuous nodes were chosen (i.e., mean and

variance) to yield probabilities which essentially match the interval probabilities in the

provided probability tables. Table I presents marginalization results, listing for both the

Gibbs and the importance sampling method, estimates of marginal probabilities for the

discrete nodes and estimates of the mean and variance for the continuous nodes. All

estimates presented are based on 5000 random generations. Differences in the estimates

achieved by these two methods are small and within anticipated variability based on the

number of replications. Plots of the continuous marginal density estimates based on the

same number of generations from both techniques are overlaid in figures 4a through 4d.

Finally, to illustrate the revision of probabilities under given information, we update the

probabilities for each of the diagnoses at node 3 given clinical data (levels of nodes 15

through 20). For instance if LVH was reported, RUQ 02 = 1.5 (which corresponds to

4.48 units), Lower Body 02 = 1.4 (4.05 units), reported CO2 >7.5, X-ray was normal, and

grunting was reported, the probabilities for disease (node 3) become,

18



PFC TGA Fallot PAWS TAPVD Lung

0.02833 0.17419 0.16339 0.53830 0.04844 0.04735 (GIBBS)
0.01622 0.17838 0.16103 0.52048 0.06454 0.05936 (Imp. Samp.)

and can be compared to the results in Table 1. The evidence point towards PAWVS and

away from lung diseases (influenced by the report of a normal X-ray).

Tell. 1. Congenital Heart Disease Example; Initial State (no evidence). Estimates.
of probabilities of discrete variables and means and variances of continuous nodes as
,rced by the Gibbs sampler (first entry), and Importance Sampling (second entry),

on 5000 generations.

(1) DwhAH&1 ?
Yes No
0.09859 0.90141
0.09830 0.90170

(2) An
0-3 days 4-10 days 11-30 days
0.33098 0.33335 0.33568
0.33320 0.33300 0.33380

(3) Di
PFC TGA Fallot PAIVS TAPVD Lung
0.03816 0.23229 0.34924 0.20520 0.13819 0.03692
0.04120 0.24320 0.35340 0.20280 0.12700 0.03240

(4) hutflQw
Left to Right None Right to Left
0.56197 0.32355 0.11449
0.55810 0.32750 0.11440

(5) CadicM xi
None Mild Complete Transp.
0.03868 .0.12052 0.64088 0.19993
0.04340 0.12070 0.62480 0.21110

(6) LM Parench
Normal Congested Abnormal
0.49429 0.25894 0.24677
0.50670 0.26170 0.23160

(7) LM ZJi
Normil Low High
0.18923 0.51253 0.29824
0.19260 0.51070 0.29670
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Talk 1. (Cont'd)

(8) am?
Yes No
0.29949 0.70051
0.29160 0.70840

(9) LVI
Yes No
0.25742 0.74258
0.25750 0.74250

(10) AM. D is
Equal Unequal
0.50673 0.49327
0.50530 0.49470

(11) HIlSW in -.2
Mean: 3.70686 Variance: 0.40038

Mean: 3.70287 Variance: 0.40199

(12) CQ2
Mean: 3.49466 Variance: 0.49334
Mean: 3.48318 Variance: 0.48438

(13) QWK-
Normal Oligaemic Plethoric Grd/Glass Asy/Pathcy
0.13991 0.11527 0.15867 0.36094 0.22522
0.14540 0.12040 0.15320 0.36110 0.21990

(14) Gruntn
Yes No
0.36674 0.63272
0.36320 0.63680

(15) Mv ored?
Yes No
0.26828 0.73172
0.26620 0.73380

(16) RU Q 2 (Continuous, see figure 5a).
Mean: 2.10503 Variance: 0.63272
Mean: 2.15679 Variance: 0.63136

(17) Lower Rmd Q2

Mean: 2.10503 Variance: 0.53596
Mean: 2.15617 Variance: 0.53570

20



Tsbk 1. (Cont'd)

(18) %
<7.5 >-7.5
0.80591 0.19149
0.81530 0.18470

(19) Norm-a Oligaemic Plethoric Grd/Glms Asy/Pathcy

0.18711 0.11816 0.19252 0.24481 0.25740
0.18710 0.11920 0.19558 0.24490 0.25300

(20) Grunting
yes No

0.35788 0.64212
0.35650 0.64350
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ABSTRACT

In formulating models for a complex system graphical representation is an effective
tool. When the components of the system are viewed as random variables, directed
graphical models detail the nature of the depedoence damon them. Moreover, if for each
vaa the conditional distroution is provided according to the graph, the joint
distribution is uniquely determined. Natural questions arise about the static behavior of
the system under such specification as well as its response to information (observed levels
of some of the variables). Answers to these questions require the ability to calculate
arbitrary marginal and conditional distributions. In complex cases (high dimensional
structures) such calculations require high dimensional integrations and/or summations.
Most of the work to date has taken advantage of properties of directed graphs to facilitate
exact calculations but is limited with regard to distributional assumptions and feasible
system size. Monte Carlo mathods for such calculations can accommodate much larger
system size with arbitrary dependence structure and distributional forms yielding
approximations which can be as accurate as desired. It is the objective of this paper to
detail such methodology. An illustration is provided using a diagnostic system for
congenital heart disease in neonates.


